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Convection in an imposed magnetic field. Part 1. 
The development of nonlinear convection 

By N. 0. WEISS 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

(Received 25 June 1980) 

Nonlinear two-dimensional magnetoconvection in a Boussinesq fluid has been studied 
in a series of numerical experiments with values of the Chandrasekhar number 
Q < 4000 and the ratio 6 of the magnetic to the thermal diffusivity in the range 
1 3 6 3 0-025. If the imposed field is strong enough, convection sets in as overstable 
oscillations which give way to steady convection as the Rayleigh number R is increased. 
In the dynamical regime that follows, magnetic flux is concentrated into sheets at 
the sides of the cells, from which the motion is excluded. 

1. Introduction 
The interaction between magnetic fields and convection can be observed directly in 

the Sun. Where the field is strong, as in sunspots, normal convection is inhibited. 
Where the average field strength is less, magnetic flux is concentrated into isolated 
tubes or ropes, and such intermittent structures seem to be characteristic of turbulent 
magnetic fields. These situations cannot be modelled in the laboratory. Numerical 
experiments are, however, possible and the aim of this pair of papers is to explore the 
nonlinear, dynamical interaction between magnetic fields and convection. 

In  order to investigate the effect of the Lorentz force on convection we must solve 
the equation of motion, together with the induction equations, for a particular con- 
figuration. The natural model problem is that of convection in a Boussinesq fluid 
heated from below in the presence of an imposed vertical magnetic field. It is con- 
venient to adopt the simplest consistent set of boundary conditions, so that the normal 
velocity and the tangential components of both the viscous and the magnetic stress 
vanish at the top and bottom of the convecting layer. Previous work has often been 
reviewed (Cowling 1957; Chandrasekhar 1961; Roberts 1967; Spiegel 1972; Weiss 
1977). These two papers present the results of an extensive series of numerical experi- 
ments on two-dimensional magnetoconvection. Part 1 is concerned with the onset of 
steady, finite-amplitude convection and the transition from oscillatory to steady 
motion. Part 2 covers the whole dynamical regime, including the transition to kine- 
matic behaviour when the field is relatively weak. 

The simpler kinematic problem, where the field is feeble enough for the Lorentz 
force to be neglected, is now well understood, When the magnetic Reynolds number is 
large, flux is eventually expelled from the convective eddies and concentrated into 
isolated tubes between them. Solutions have been obtained for various choices of 
velocity (Parker 1963, 1979; Clark 1965, 1966; Weiss 1966; Clark & Johnson 1967; 
Busse 1975; Galloway & Weiss 1981). In all these examples, the transverse component 
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of the velocity vanishes at the centre of the tube and varies linearly across it; flux 
concentration is limited by diffusion and the field has a Gaussian profile (e.g. Proctor & 
Weiss 1978). 

The full dynamical problem can only be understood by reference to linear theory. 
The static, conducting solution loses stability when the Rayleigh number R exceeds a 
critical value. The form of this bifurcation depends on the ratio of the magnetic 
diffusivity 7 to the thermal diffusivity K .  If 7 > K ,  the eigenvalues are real and con- 
vection sets in as a direct (or monotonic) instability at R = R(e);  if 7 < K (the astro- 
physically interesting case) convection may first appear as an oscillatory (or overstable) 
mode corresponding to a Hopf bifurcation at  R = R(O) (Thompson 1951 ; Chandrasekhar 
1952, 1961; Danielson 1961; Weiss 1964). 

Nonlinear theory is of course more difficult. Veronis (1959) used modified pertur- 
bation theory to obtain finite-amplitude solutions in the neighbourhood of R("), and 
mildly nonlinear oscillations can be followed when R(O) is almost equal to R(e) (Knobloch 
& Proctor 1981). Busse (1975) expanded about R,, the critical Rayleigh number in the 
absence of a magnetic field, and demonstrated the possibility of subcritical steady 
convection, with R < Rce), for 7 < K .  Here we provide the first systematic study of the 
development of nonlinear magnetoconvection. A preliminary account of some of these 
results was given by Weiss (1975) and Spiegel (1972) reports similar calculations by 
J. Wright. Analogous solutions for axisymmetric magnetoconvection in a cylindrical 
container have been published by Galloway & Moore (1979). 

For 7 < K the calculations presented here do indeed show, as R is increased, the 
development of nonlinear oscillations followed by the appearance of steady convection. 
Subcritical steady solutions, with R < R@), are possible because the magnetic flux is 
confined to sheets on either side of a convection cell, so facilitating motion in the field- 
free central region. When the imposed magnetic field, B,, is sufficiently weak the field 
profile in these sheets is approximately Gaussian and the values of Rmin, the lowest 
value of R for which steady motion can occur, agree with Busse's (1975) predictions. 

If B, is larger an entirely new regime is found. The flux sheets become dynamically 
active and the magnetic field generates vorticity with the opposite sense to that in the 
convective eddy until motion is excluded from the flux sheets (Peckover & Weiss 1978; 
Galloway, Proctor & Weiss 1978). The horizontal component of the velocity no longer 
varies linearly across the flux sheets, which are virtually stagnant. Within them the 
field is nearly uniform, dropping abruptly in narrow current sheets at the interfaces 
between flux sheets and adjacent eddies. The field profile, which has a shape like a 
cocked hat for kinematic concentration, looks more like a top-hat in this regime. For B, 
sufficiently large and y / K  5 0.2 steady convection first appears with the flux concen- 
trated into sheets from which the motion is excluded. Moreover, the value of Rmin and 
the field strength in the flux sheet are found to be independent of 7 when q / K  Q 1 ; from 
the numerical experiments it seems that steady convection first appears when the 
reduced free-fall velocity is roughly equal to the Alfven speed, so that the temperature 
difference across the layer is proportional to BE but does not depend on any of the 
diffusivities. 

When R(*) < Rmin < R(e) there is a range Rmin < R < R,,, in which both oscillatory 
and steady solutions are possible. The transition from large-amplitude oscillations to 
steady convection is fascinating but rather mystifying. Fortunately, it is possible to 
construct a simple fifth-order system of ordinary differential equations whose solutions 
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mimic those of the full two-dimensional problem (Knobloch, Weiss & Da Costa 1981). 
This fifth-order model has been studied in detail and is a reliable guide both to the 
bifurcation structure of the full problem and to the nature of the transition from 
oscillatory to steady motion at R = R,,,. In general, the oscillations increase in 
period as R approaches R,,,. For certain values of the parameters the period becomes 
infinite at Rma,: thus the branch of oscillatory solutions terminates on an (unstable) 
position of the steady branch. For other values there is a bifurcation from oscillations 
that are symmetrical about the static state to asymmetrical oscillations, with a 
preference for one or the other sense of motion (depending on the initial conditions). 
It remains unclear whether this is ever followed by a further sequence of bifurcations 
leading to aperiodic oscillations before the oscillations lose stability to the steady 
branch. 

The two-dimensional problem is defined in the next section. This is followed by 
summaries of linear theory and finite-amplitude expansions, without which the non- 
linear results would be incomprehensible. The results of numerical experiments with 
comparatively low values of B, are contained in $4, while runs in which motion is 
excluded from the flux sheets are described in $ 5 .  Nonlinear oscillations and the 
transition to steady motion are discussed in 3 6, which is followed by a description of 
the onset of steady subcritical convection at  R = RmIn. The final section summarizes 
the most important results and relates them to other examples of double diffusive 
convection. 

2. The model problem 

satisfy the equations 
In a Boussinesq fluid with velocity u, the temperature T and the magnetic field B 

- - V .  (Tu) + K V T ,  (2.1) 
aT 
at 
-- 

- -  aB - V A ( U A B ) + ~ V ~ B ,  
at 

with V.u=O and V.B=O. (2.3) 

The equation governing the vorticity o = V A u, formed by taking the curl of the 
equation of motion, is 

(2.4) 
aw 
at 
_ -  - v A (u A 0) + P O ' ~  A (j A B) -a VT A g+ YV'O, 

where the electric current j = p-'V A B and the density p = po[ 1 - a(T - To)]; g is the 
gravitational acceleration, a is the coefficient of thermal expansion and po is the density 
at  the reference temperature To. 

We shall consider two-dimensional convection in a layer confined between fixed 
horizontal planes, referred to Cartesian co-ordinates with the z axis pointing vertically 
upwards. Both the velocity and the magnetic field are restricted to the xz plane and 
independent of y. Let e, be a unit vector in the y direction; then the vector potential 
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A = Ae,, and B and u are described by a flux function A(%, z )  and a stream function 
~ ( x , z )  such that 

while j = je, = -p-l V2Ae,, o = wey = - V2$e,. (2.6) 

Then equation (2.2) can be integrated to give 

(2.7) 

(2.8) 

aA - = - V . ( A u ) + v V ’ A  
at 

and (2.4) becomes 
aw - at = - V . (wu) +p;’V. ( j B )  - g a g  + v V2w. 

A particular configuration is specified by five dimensionless parameters. For con- 
vection in the region (0  < x < Ad; 0 < z < d} driven by a vertical temperature 
difference AT,  in the presence of a horizontally averaged field that is vertical with 
magnitude B,,, these are the Rayleigh number 

ga: AT d3 
R =  

KU ’ 

the square of the Hartmann number (or Chandrasekhar number) 

Bg d2 &=- 
PPOW 

(2.10) 

the Prandtl numbers Q =  V / K  and C = ~ / K  (2.11) 

and the normalized cell width A. To reduce the number of parameters, all the nonlinear 
computations that will be described in this paper have a = 1 and h = 1 (corresponding 
to square cells). 

It is convenient to measure lengths in terms of the layer depth d, time in terms of the 
thermal timescale d 2 / K ,  temperature in terms of AT and magnetic fields in terms of the 
imposed field B,,. From henceforth all quantities will be expressed in dimensionless 
form unless specifically stated otherwise. Then (2.1), (2.7) and (2.8) become 

(2.12) 
aT 
- = - V .  (Tu) + V2T, 
at 

-- - -V . (Au)+CV2A (2.13) 
aA 

- = - V . ( w u ) + a  C Q V . ( j B ) - R g + V 2 w ] ,  (2.14) 
at 

and 

where the dimensionless current j = -V2A.  Equations (2.12)-(2.14) must be solved 
together with 

V2$ = - w  (2.15) 

in the region (0 < x < A ;  0 c z < I} subject to appropriate boundary conditions. 
The simplest boundary conditions are the extension to magnetohydrodynamics of 

the ‘ free ’ boundary conditions used for ordinary Rayleigh-B6nard convection 

at 

[ 
aw 
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(Chandrasekhar 1961). We assume that the temperature is fixed at  the upper and lower 
boundaries and that there is no lateral heat flux, that the total magnetic flux through 
the region remains constant, and that the normal velocity, together with the tangential 
components of both the viscous and magnetic stresses, vanishes on all the boundaries. 

T = 1 (z= 0 ) ,  T = 0 ( x =  l ) ,  aT/ax= 0 (X = O , A ) ,  (2.16) Thus 

A = 0 (x = O ) ,  A = h (x = A) ,  al l la% = 0 ( z =  0 , l )  (2.17) 

and $ = w = 0 (x = 0,h;  2 = 0 , l ) .  (2.18) 

These boundary conditions do not correspond to any physically realizable configura- 
tion. Stress-free boundaries are, however, more plausible in astrophysical than in 
laboratory applications. The lines of force are not fixed and can move laterally at  
z = 0, l  but, from (2.17), B, vanishes on all the boundaries. These boundary conditions 
give solutions that are periodic in both x and x ,  with sines and cosines as eigenfunctions 
of the linear problem (Chandrasekhar 1961). Gibson (1966) showed that the criteria 
for the onset of instability were not substantially altered when more realistic boundary 
conditions were adopted. 

The system just defined is highly nonlinear and in general the equations must be 
solved numerically on a computer. The results in this paper were obtained using the 
methods described by Moore, Peckover & Weiss (1973). The parabolic equations 
(2.12)-(2.14) were integrated using a centred second-order finite-difference method on 
a staggered mesh, with a leap-frog scheme for the nonlinear terms combined with the 
Dufort-Frankel scheme for the diffusive terms. The Poisson equation (2.15) was solved 
by Fourier analysis in the x direction combined with tridiagonal elimination in the 
z direction. The mesh used had equal intervals in each direction; the number of 
intervals in the x: direction, N,, was fixed at 12, 24, or 48 and the number of intervals 
in the z direction, N, = N,/A. Accuracy has been discussed elsewhere (Moore et al. 
1973; Moore & Weiss 1973). The computer code is closely related to others used to 
study Rayleigh-BBnard convection (Moore & Weiss 1973), magnetic Oberbeck con- 
vection (Peckover & Weiss 1978) and double-diffusive convection (Huppert & Moore 
1976). The numerical procedures were checked by comparing critical Rayleigh 
numbers, growth rates and periods for small perturbations with those predicted by 
linear theory. The computational results also agree well with the finite-amplitude 
theory developed in the next section. 

3. Small-amplitude convection 
3.1. Linear theory 

Nonlinear convection cannot be understood without reference to the growth of small 
disturbances. The simplest case is that of a perfect fluid with all diffusivities equal to 
zero (WalBn 1949; Cowling 1953, 1957). The unstable thermal stratification tends to 
produce convection, while the magnetic field supports oscillations which correspond 
to trapped hydromagnetic waves. Consider small perturbations that vary as est and let 

b2 = 1 + l /P.  
Then, in dimensional terms, 

(b2 - 1) 901 AT n2Bi 
8 2  = ----* 

b2 d ppod2' 
9 

(3.2) 

P L M  108 
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( b )  

, .  
R ,  R ( O )  R min R(e) R 

FIGURE 1. (a )  Eigenvalues of the linear problem: behaviour of eigenvalues in the complex- 
s plane as the Rayleigh number is increased, when convection sets in as overstable oscillations. 
( b )  The nonlinear regime: sketch showing the branch of oscillatory solutions bifurcating from 
R ( O )  and the branch of steady solutions bifurcating from R(e) .  Stable steady solutions exist for 
R > Rm2,, where R(O) < R,, < R(e) .  

$2 is real and the system is unstable if the magnetic term is smaller than the buoyancy 
term. It follows from (3.2) that as AT is increased for fixed B, instability sets in with 
elongated cells (b2 1)  when ga AT = n2BE/,upod, though square cells (b2 = 2) become 
unstable when AT has been doubled. 

The problem is more interesting when the diffusivities are finite (Thompson 1951; 
Chandrasekhar 1952, 1961 ; Danielson 1961 ; Weiss 1964). The eigenvalue s satisfies 
a cubic characteristic equation and there is a marginal state (s = 0) when R = RU, 
where 

and 
b6 

R, = n4- ( a 2 -  1)' (3.4) 

is the value of RCe) in the absence of a magnetic field. For 6 > 1 the only bifurcation 
from the static solution occurs a t  R = R(e) and the system is unstable for R > Ro. If 
6 < 1 and 

Q > Qo = m2b45(1 + a)/Cd1- 01,  (3.5) 

convection sets in as an oscillatory or overstable mode. The behaviour of the eigen- 
value s is sketched in figure I (a )  (cf. Weiss 1964). Of the three solutions to the charac- 
teristic equation, one is always real and negative (corresponding to a stable solution). 
For R < RC0) the other two eigenvalues are complex conjugates with negative real 
parts. When R = R ( O )  these eigenvalues are pure imaginary; as R increases, they have 
positive real parts but their imaginary parts decrease until R = R@), when there are 
two equal real eigenvalues. For R > Hi) both eigenvalues are real: one increases 
monotonically with R, the other decreases and passes through zero when R = R(e) 
(which therefore corresponds to a transition from instability to stability for that 
solution). 

The onset of overstability occurs when R = R(O), where 
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I n  a star the radiative conductivity is normally large and Q $ c-l$ 1; from (3.6) 

if Q/b4 $ C-l 1. The transition from oscillatory to direct (or monotonic) modes 
occurs when R = Ro. To  evaluate Rci) it is necessary to solve the cubic given in 
equations (159)-( 163) of Weiss (1964). For all calculations in this paper u = 1 and the 
cubic then simplifies to 

(r - -q[2r2 + (5-  4) r - a] = 0, (3.8) 

where 
n2b4(1-5)2 and = (b2- 1) R 

n2b2CQ ' CQ q =  

When 5 < 1 and (f:Q/b4)) $ 1 

(3.9) 

(3.10) 

in fact this result holds for all u and f: < 1 provided that Q is sufficiently large. Now f:Q, 
like R, has the product KV in the denominator and does not depend on 7. In  this limit, 
therefore, the transition to direct modes corresponds exactly to the instability criterion 
derived from (3.2), in which no diffusivities appear. The finite thermal diffusivity does, 
however, allow overstability for R < R". 

3.2. Modified perturbation theory 

Near R = R(") steady finite-amplitude solutions can be obtained using the expansion 
procedure devised by Malkus & Veronis (1958), which was first applied to magneto- 
convection by Veronis (1959, in a footnote). If all quantities are expanded in terms of 
a small parameter a such that 

+ = asin(nx/h)sinnx+O(a3), R = R(e)+a2R2+O(a3), (3.1 1) 

then (3.12) 

I n  general R, may be either positive or negative, depending on the values of h and 6, 
but if h 6 1 then R, > 0 for all f:. Thus there exist steady finite-amplitude solutions 
with R just greater than R(". 

The stability of these solutions is discussed in detail by Knobloch et al. (1981). If 
f: 2 1 or Q < Q,,, defined in (3.5), there are no overstable solutions. For R, > 0 the 
simple bifurcation at R = R(e) is supercritical and the finite-amplitude solutions are 
stable near the onset of convection. If f: < 1 and Q > Qo there is a Hopf bifurcation a t  
R = R(O), which is supercritical for h = 1.  When overstability sets in first the steady 
solutions are always unstable in the neighbourhood of the bifurcation a t  R = R(e), 
regardless of the sign of R,. 

3.3. Gaussianflux tubes 

When 5 < 1 the above expansion can be extended into the regime where the PBclet 
number is still small but the magnetic Reynolds number R, = a/f :  is large. Suppose 
that h = 1 and + = asinnxsinnz. (3.13) 

9-2 
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Then we can consider the simplified kinematic problem and solve (2.13) and (2.17) for 
the magnetic field (Busse 1975; Galloway & Weiss 1981). When R, 9 1 nearly all the 
flux is eventually expelled from the eddy and concentrated into narrow sheets (or 
tubes) at x = 0 , l .  The width E of these sheets can easily be estimated (e.g. Proctor & 
Weiss 1978). Near the stagnation point a t  x = x = 0, $ z n2axx so that the horizontal 
component of the velocity u z -+ax. The induction equation is satisfied by a 
vertical field, B = (0, 0, B(x)) ,  confined to a sheet with half-width 6 such that 

B(x) = B* exp ( - x2 /e2 ) ,  E = (J2/7r) R;i. (3.14) 

Flux conservation then requires that the peak field 

B* = J(27r) R i .  (3.15) 

In  this kinematic solution u varies linearly with x near the edge of the cell and the field 
has a Gaussian profile, while e N R;i and B* - Ri .  

Busse (1975) estimated the velocity a by expanding about R,, the critical Rayleigh 
number in the absence of a magnetic field, and computing the kinematically distorted 
field. For h = 1 he obtained a modified form of the finite-amplitude expression in 
(3.11) and (3.12), with 

R = R,++n4a2+ 34*5Q(a/(J-h+O(a3). (3.16) 

This result really represents the energy budget for the dynamical problem, normalized 
with respect to the viscous dissipation qa2, for the rate of ohmic dissipation in a flux 
sheet of thickness E ,  with a field B*, is of order RiaCQ. The estimate is valid for small a, 
for 6 < a and for Q sufficiently small that the field affects the magnitude but not the 
form of the velocity in (3.13). 

From (3. IS), Busse deduced that steady convection is possible with Rmin < R < Be), 
for some Rmin > R,, provided that the magnetic Reynolds number is sufficiently 
large. He observed that, for fixed Q, the function Rfa) defined by (3.16) reaches its 
minimum value Rmin when 

a = (17.25g4Q/n4)?, (3.17) 

so that Rmin = R, + $( 17*254:Q)*. (3.18) 

Comparison of (3.18) with (3.3) shows that for y sufficiently small and Q sufficiently 
large Rmln < R@, though it is likely that R(O) < Rmin. In  the regime where this result is 
valid steady convection is possible for all R > Bmin. Overstable modes should appear 
earlier and so there may be some hysteresis when R is slightly greater than Rmln. The 
behaviour of solutions in the R-a2 plane is shown schematically in figure 1 ( b ) .  For a 
given value of R > Rmin, equation (3.16) yields two possible values of u2 but the 
solutions on the lower branch should be unstable. It is tempting, as well as tidy, to 
link this unstable branch to the bifurcation a t  R = R@), as sketched in the figure (cf. 
Proctor & Galloway 1978). This conjectured link is supported by the results of 
Knobloch et al. (1981). To confirm these predictions we turn to the numerical 
experiments. 
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4. Numerical experiments: flux expulsion and subcritical convection 
The calculations described in this and the following section were designed to explore 

the transition from an almost linear to a thoroughly nonlinear regime and, in parti- 
cular, to investigate the onset of steady finite-amplitude convection. All the results 
presented are for square cells ( A  = 1 )  with cr = 1 and 5 < 1. For each choice of Q and 5 
a series of runs was made a t  different values of R. Initial conditions could be varied: 
runs were started either by perturbing the static solution or, preferably, by modifying 
a previausly obtained solution. The calculations were pursued until solutions con- 
verged either to a steady state or (with one exception) to strictly periodic oscillations. 
Where necessary, the mesh interval was halved in order to ensure sufficient accuracy. 
On a mesh with N, = N, = 24 typical runs required from 2000 to  6000 timesteps, 
taking 4-12 minutes on an IBM 370/165. This paper presents results from over 
100 runs, which are listed in the appendix. 

The results can be presented either by plotting contours of the fields 9 (streamlines), 
w ,  A (lines of force) and T (isotherms) or in terms of global measures of the flow. The 
global kinetic and magnetic energies are measured by the mean-square velocity 

and the mean-square magnetic field 

The efficiency of convection is measured by a normalized heat transport, the Nusselt 
number 

N = A-1 (WT - aT/az) ax; (4.3) s 
N is a function of x but should be constant in a steady state. The quantities (u2) and 
(B2), together with N evaluated at the top and bottom of the layer and the numerically 
largest values of each component of u and B, could be monitored a t  every timestep of 
the calculation. All runs used in this paper, with corresponding values of N ,  are 
specified in the appendix. 

Let us first consider the effect of a comparatively weak magnetic field. When Q 5 1 
the field has no dynamical effect. The velocity and temperature could be obtained from 
solutions of the ordinary Rayleigh-BBnard problem (e.g. Moore & Weiss 1973) and 
B could then be derived from the induction equation. For comparison with subsequent 
results N is plotted against R in figure 2 (a )  for the case when Q < 1. The only bifur- 
cation is a t  R, = 8n4 z 779.3; thereafter, N increases monotonically with R. I n  a 
steady state, magnetic flux is expelled from most of the convecting region, when R, is 
large, and concentrated a t  the lateral boundaries, as in earlier kinematic calculations. 

Also shown in figure 2(a)  are the very different results obtained with Q = 100, 
6 = 0.1. Convection sets in as an oscillatory mode when R = R(O) % 1051 and the peak 
d u e s  of the Nusselt number for oscillatory solutions are indicated in the figure. 
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3.0 - 3.0 

N -  N -  

(a ) 

- 

(b 1 

FIGURE 2. Subcritical convection with @Q < 50. The Nusselt number N is plotted as a function 
of the Rayleigh number; the continuous lines connect stable steady solutions and the vertical 
bars indicate the maximum amplitudes of oscillatory solutions. ( a )  Convection in the absence of a 
magnetic field (& = 0), with the steady bran-h bifurcating from R,, and convection with 5 = 0.1, 
& = 100. In the latter case the oscillatory branch bifurcates from R(") and the steady branch, 
presumably, from R(e) .  The value of Rmin calculated from (3.18) is indicated by the letter B. 
( b )  As above but for 5 = 0.05, Q = 100 and 200. 

0 4000 8000 12000 16000 

N 

2.0 

1 .o 
0 4000 8000 12000 16000 

R 
FIGURE 3. Convection with CQ = 100; as for figure 2 except that the time-averaged value of the 
Nusselt number is also shown for the oscillatory solutions. (a )  5 = 1 and 0.5, ( b )  5 = 0.2, (c) 5 = 0.1, 
( d )  g = 0.05. 

Steady convection appears for R > R m i n z  1780, very close to the value of 1746 
predicted by (3.18). From table 1 it  can be seen that Rmin < RCi) < steady con- 
vection is found in st parameter range where linear theory predicts oscillatory modes 
and well before the bifurcation at  RCe). Figure 2 ( b )  shows N ( R )  for two further sets of 
runs, with Q = 100,200 and 5 = 0.05. Once again, the agreement between the values of 
Rmin predicted by Busse (1975) and those found by computation is extremely good, 
confirming the accuracy of each approach. 

Inspection of the numerical results shows that, near R = Rmin, the stream function 
does not differ significantly from that in (3.13), that u varies linearly with x near 
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Q 
100 
100 
200 

200 
500 

1000 
2 000 
4 000 

c 
0.1 
0.05 
0.05 

0.5 
0.2 
0.1 
0.05 
0.025 

@Q 
31.6 
22.4 
44.7 

141 
224 
316 
447 
632 

%in 
r-__h 7 

From 
R ( o )  RCi, R(e)  Computed (3.18) 

1051 1911 2 753 1780 1746 
91 1 1591 2 753 1480 1512 
963 2 039 4727 1950 2 054 

3 233 4 505 4727 4 900 3 982 
2 306 5 943 10 649 5 950 5 400 
2 029 6446 20518 6 300 6 876 
1895 6702 40258 6 350 8 824 
1830 6834 79736 6400 11394 

TABLE 1.  The onset of steady convection. 

Rmax 

1780 
1500 
2 000 

4 800 
6050 
6 550 
6 850 

x = 0 , l  and that Bs(x, 0) andB,(x, 1) have approximately Gaussian profiles in the flux 
ropes, which are fairly broad. To this extent the solutions are qualitatively similar to  
those obtained when the magnetic field has no dynamical effect. Busse's treatment is, 
however, valid only for a restricted range of the parameters, such that @Q 5 50. When 
C+Q 100 the values of Rmin found from numerical experiments cease t o  agree with 
those obtained from (3.18), as can be seen from the results in table 1. In  this new 
regime the solutions no longer have the same form; in particular, the Gaussian profile 
flattens until the field in the flux ropes becomes almost uniform. 

5. Numerical experiments: exclusion of motion by the magnetic field 
To investigate this fully nonlinear regime the development of steady convection 

was studied for different values of < while [Q was held constant. (In dimensional terms 
this corresponds to  varying 7 while B, is fixed.) For all these experiments {Q = 100. 
Then, from (3.5)) convection sets in as an oscillatory mode provided that 5 < 0.6581; 
when 5 = 0.6581, R@) = R(') = R") z 3779. As g -+ 0, R@) + 1766, from (3.6),  
while RCi) -+ 6962 and RU becomes infinite. Six series of runs were carried out, with 
1 > ( > 0.025.  

When 5 = 1, steady convection occurs for all R > R(e) z 2753. The bifurcation is 
supercritical and the Nusselt number increases monotonically with R, as shown in 
figure 3 (a) .  As R increases, magnetic and thermal boundary layers are formed but the 
vorticity has no fine structure, as can be seen from figure 4(a). The streamlines are 
similar to those for the linear solution of (3.13) and the flow resembles that found in 
the absence of a magnetic field (Moore & Weiss 1973). 

Table 1 lists values of R@), R({), R@), Rmin and Rmaxfor the runs with 5 < 1.  Oscillatory 
solutions are found when [ = 0-5 and their amplitude increases with R, as shown in 
figure 3 (a) .  These finite-amplitude oscillations persist up to  R = 4800, a value larger 
than Rci) and marginally greater than RO. When R = 5000 steady convection appears 
with N = 1.21 (for comparison, a t  the same value of R, N = 2.21 when 5 = 1) .  This 
steady solution was used to  start another run at  R = 4800, in order t o  investigate 
possible hysteresis, but oscillations developed once again. Similarly, when the oscil- 
latory solution for R = 4800 was used to start a run with R = 5000 only steady con- 
vection was obtained. For this value of y, oscillatory convection occurs over a range 
R@) c R < Rmax greater than that predicted by linear theory, and finite-amplitude 
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steady convection is possible only for R Rmln > RCe). Apparently N still increases 
monotonically with Ralong the steady branch that bifurcates from the static solution a t  
R = R("). As we have already seen, the steady solution is unstable in the neighbourhood 
of Roand does not gain stability until R z 5000. This pattern of behaviour is consistent 
with that found by Knobloch et al. (1981) and by Knobloch & Proctor (1981). 

For smaller values of 5 the pattern is quite different and steady convection appears 
while R c R(e). Figures 3 ( b )  and 3 (c) show N as a function of R for 6 = 0.2 and 6 = 0.1. 
When 6 = 0.2, small perturbations develop into finite-amplitude oscillations for 
R < 6000 but give rise to steady convection if R 6250. A run with R = 6000, started 
from a steady solution at  R = 6500, settled down to steady convection with N = 1.45 
but the steady solution gave way to oscillations at  R = 5900. Conversely, a run with 
R = 6100, started from the oscillatory solution at R = 6000, settled down to steady 
convection. Thus a slight amount of hysteresis can occur. Similarly, when 5 = 0.1, 
oscillations persist until R = 6500 but steady solutions can be generated for R 2 6350, 
with N 1.44. 

As 5 is decreased, the oscillatory solutions grow in amplitude, though the average 
value of N at the end of the oscillatory branch is always less than that at the beginning 
of the steady branch. Both the peak value of N and its average value R have maxima 
befcre the oscillations disappear. Figure 3 (a) shows results for 6 = 0.05. Steady con- 
vection is possible for R 2 6400 while oscillations can be maintained up to R = 6800: 
the range of overlap, though modest, has increased and the transition from oscillatory 
to steady convection occurs when R is close to R(0, the value at  which the eigenvalues 
of the linear problem cease to be complex. The runs at  R = 6400 and R = 6500 with 
N, = 24 were both repeated with N, = 48 but there was no significant change in the 
Nusselt numbers (1.40 and 1-47 respectively). Finally, a single run with R = 6500, 
5 = 0.025 again showed steady convection with N = 1.47. 

These results clearly demonstrate the existence of steady subcritical convection, 
with Rmin ,< R < Be), provided g ,< 0.2. Moreover, both the value of Rmin and the 
corresponding Nusselt number become independent of 6 as [+ 0. For [Q = 100, 
Rmin x 6400 and N x 1.40 in this limit, SO that R(0) < Rmin < RCi) < R(e). Table 1 also 
shows that Rmi, is much less than the value computed from (3.18), which increases as 
5-04. In fact Rmin apparently tends to a limit that is quite close to the limiting value of 
RCi), although the linear and nonlinear solutions are entirely different. 

To obtain steady convection near Rmin it is necessary to start from an adjacent 
steady-state solution. When R -= Rmln the motion slowly decays, without reversing, 
until an almost static state is reached. Only then do spasmodic oscillations start. 
(For R slightly greater than Rmax, on the other hand, there are irregular transient 
oscillations before the solution settles down towards a steady state.) Figure 4 ( b )  shows 
the fields when R is slightly greater than Rmin for = 0.025, the smallest value that was 
used. (The sense of rotation in the eddy, which is arbitrary, is opposite to that in 
figure 4 (a).)  Note that the streamlines are concentrated near the centre of the cell and 
do not approach the lateral boundaries. The field is restricted to sheets which together 
fill more than a quarter of the cell, while the eddy is confined to the central region and 
motion is excluded from the flux sheets. Within these sheets thermal diffusion tends to 
make the vertical temperature gradient more uniform. The isotherms are therefore 
slightly inclined in the opposite sense to that in the central region. Hence there is a 
weak, thermally driven countercirculation in the flux sheets, whose effect on the lines 
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FIGURE 4. Steady convection with {& = 100. Contours of li/ (streamlines), w ,  T (isotherms) and 
A (lines of force) for (a )  5 = 1, R = 6000, ( b )  5 = 0.025, R = 6500, (c) 6 = 0.1, R = 15000. 

of force can just be detected. The fields for a more vigorously convecting case, with 
N = 2-64, are shown in figure 4 (c). The magnetic field is concentrated into na.rrower 
zones and the vorticity shows more structure than in figure 4 (b ) .  

I n  this regime, where Rmin tends to  a limit for 5 < 1, the thickness of the flux sheet 
is also independent of 6. Figures 5 (c), (d ) ,  (e) and (f) show profiles of B, in the flux sheet 
for R x RmIn and 5 = 0.2, 0.1, 0.05 and 0.025, together with corresponding values of 
u(x), compared with similar curves for R = 6000,c = 1 in figure 5 (b ) .  When 5 = 1, the 
horizontal component of the velocity still increases linearly across the flux sheet and 
the magnetic field has a Gaussian profile; as 5 decreases the field profile becomes flatter 
until, for 5 = 0.025, there is a local minimum a t  x = 0 caused by the slow counterflow 
within the flux sheet. At the same time u drops to  zero where the field is strong and only 
rises in the narrow current sheet, where laB,/axl is large. Profiles of the vertical 
velocity show even more clearly how motion is excluded from the flux sheets. In  
figure 5(a) w(x ,  4) is plotted for R = 6000, 5 = 1 and for R = 6500, 5 = 0.025, corre- 
sponding to the fields in figures 4(a) and ( b )  respectively. When c = 1, w is a maximum 
at the edge of the cell and falls monotonically towards the centre but for 5 = 0.025 the 
vertical velocity is slightly negative a t  the edge, and increases a t  first slowly, then more 
rapidly, to  reach a maximum near x = 0.3. The run with R = 15000, 6 = 0.1 yields 
similar results. I n  the fully dynamic regime the flux sheets are almost stagnant and 
both components of the velocity approach zero at  the sides of the cell. As x increases, 
w rises more rapidly than u but only reaches its maximum outside the flux sheet. 

The half-width E of the flux sheet can be defined as the value of x for which I aB,/axl 
is a maximum. From figure 5 i t  can be seen that E is approximately constant. For these 
runs E FZ 4 and the field is amplified by a factor of around 4. (In dimensional terms, 
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FIGURE 5. Stagnant flux sheets. Steady solutions with [Q = 100: (a )  w(x, &) for 6 = 1, R = 6000 
and 5 = 0.025, R = 6500; B,(z, 1) and ufz, 1) for (6) 5 = 1, R = 6000, (c) C = 0.2, R = 6000, 
( d )  5 = 0.1, R = 6350, ( e )  5 = 0.05, R = 6400, (f) 5 = 0.025, R = 6500. 

since B, is fixed, it follows that both B and the peak field B* are independent of 7 when 
R = Rmin.) Only the thickness of the current sheet depends on the magnetic dif- 
fusivity. Since both Rmin and N are independent of 7 when 6 < 1, the velocity too 
must approach a limiting form. I n  these results the ratio of the Alfv6n speed (ucQ)* B" 
to the maximum vertical velocity is about 4. For R > Rmin, B* remains approximately 
independent of 6, though N drops slightly as c is  decreased. The results are insufficient 
to demonstrate the presence of any asymptotic regime but for a given 5 they can be 
fitted by assuming that Ncc R4. 

6. Nonlinear oscillations 
The periodic solutions display a considerable variety of behaviour and the transition 

from oscillatory to steady convection can be very complicated. Much of this rich 
structure can be clarified by close study of the time-dependent results. Details of the 
transition to steady convection and of bifurcations from the oscillatory solutions can 
be confirmed by studying a simpler system of five coupled ordinary differential 
equations, derived from (2.12), (2.13) and (2.14), whose solutions mimic the behaviour 
of solutions to the full two-dimensional problem (Knobloch et al. 1981). 

Near the onset of overstability the nonlinear oscillations differ only slightly from 
the eigenfunctions of the linear problem. Figure 6 shows the time-dependent fields a t  
six successive stages during half of a full cycle, for Q = 1000, 6 = 0.1 and R = 3000. 
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FIGURE 6. Oscillatory solutions for CQ = 100, &' = 0.1. Contours of 9, w ,  T and A at six equally 
spaced intervals in time during a half-cycle, starting when the velocity is a maximum, for 
R = 3000. The contour levels remain fixed throughout the sequence. 

Initially the motion is clockwise and the velocity is a t  a maximum. The streamlines 
scarcely differ from those given by (3.13), while the vorticity rises to a flat extremum 
a t  the centre of the cell and shows no fine structure near the sides. As the oscillation 
proceeds the field is distorted but no isolated sheets of flux appear. Some structure 
appears in the vorticity as the flow reverses and the sense of motion becomes anti- 
clockwise; the maximum dist,ortion of the field coincides approximately with the 
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FIGURE 7 .  As for figure 6 but with R = 5000. 

moment when the flow is halted and the field is almost uniform as the velocity 
approaches its maximum. This pattern of behaviour is shown more clearly in figure 
9(a ) ,  where the Nusselt number N ,  the mean-square velocity (u2) and the excess 
magnetic energy, measured in the same units as (u2), 

are plotted as functions of time for one complete oscillation, starting a t  the instant 
when (u2) is a minimum. The variation is almost sinusoidal: kinetic energy is trans- 
formed into magnetic energy and the velocity drops to  zero as the field is compressed. 

( A W  = (dX?)[(B2)-11 = (dQ)(IB-esIz)9 (6.1) 
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FIGURE 8. As for figure 6 but with R = 6500. 

The change in magnetic energy is, however, about twice the change in the kinetic 
energy. 

As R is increased, the oscillations develop more structure. Two further cases, with 
the same values of Q and 1: but with R = 5000 and R = 6500, are shown in figures 7 
and 8, with the corresponding behaviour of global quantities displayed in figures 9 ( b )  
and (c) .  The contours in figure 7 show that the field is more thoroughly distorted and, 
correspondingly, more dynamically active. As the field lines are compressed, two zones 
of countervorticity, generated by the Lorentz torque, appear and gradually expand 
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FIGURE 9. Variation of global quantities in the oscillatory solutions illustrated above. N ,  (u2) 
(solid line) and (AB2) (broken line) as functions of time for [Q = 100, 5 = 0.1 and (a )  R = 3000, 
( b )  R = 5000, (c) R = 6500. 

towards the centre until the flow there is reversed. This nonlinear behaviour differs 
from that in figure 6 as well as from that of the linear solutions. Figure 9 ( b )  shows that 
the oscillations have increased in period as well as amplitude. The kinetic energy falls 
more rapidly than it rises and the peaks are sharper than the troughs. 

These changes are much more marked when R = 6500, just before the transition to 
steady convection at R = Rmax. The period is more than double that for R = 3000 and 
the oscillations are spasmodic : bursts of activity are separated by long static intervals, 
when the kinetic energy is extremely small, as can be seen from figure 9 (c). The peak 
value of (AB2) remains as high as in figure 9 ( b )  but the maxima of N and (u2) are 
reduced. The sequence of contours in figure 8 show that the field is dynamically more 
important. Flux is rapidly concentrated a t  the edges of the cell until the Lorentz force 
halts the motion. The lines of force straighten out rapidly, on the Alfvbnic timescale, 
so that (B .  V) B is everywhere small and the Lorentz force can be balanced by a 
pressure gradient. The field gradually grows more uniform, on a diffusive timescale, 
until the next burst of activity ensues. Despite the period of stasis, the motion flips 
from one direction to the other and the numerical solutions are almost exactly periodic. 
The transient effects of the initial conditions do, however, take a long time to decay 
and this run had to be continued for ten full cycles to confirm the regularity of the 
oscillations. 

The period P of the oscillations in figure 9 is the interval between alternate maxima 
(or minima) of N ,  {u2) or (AB2),  since the flow reverses in between. It is clear from this 
figure that P increases with increasing R:  figure 10 shows the ratio of P to Po, the period 
a t  R = R("), as a function of R for two other series of runs with (Q = 100. When 

= 0.5, P/P0 increases monotonically from unity at R(O) to a value of 3.1 just before 
the oscillations disappear. When ( = 0.05, the ratio first decreases to a minimum value 
around 0-8 and then rises until oscillations give way to  steady motion. The results 
for 5 = 0-5 suggest that P/Po may become infinite for a finite value of R and the model 
calculatiom of Knobloch et d. (1981) have shown that the oscillatory branch can 
terminate on the unstable portion of the steady branch a t  R = Rmax, when the period 
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FIGURE 10. Variation of the period of oscillatory solutions. PIPo is plotted against R for 
CQ = 100 and 5 = 0.5 (narrow range), 6 = 0.05 (broader curve). 
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FIGURE 11. Asymmetrical oscillations. N and (uz) plotted as functions of time for a complete 
cycle with CQ = 100 and (a) < = 0.2, R = 6000, ( b )  5 = 0.05, R = 6800. The distance between 
the lower peaks and the horizontal bar shows the extent of tho asymmetry. 

is infinite. Whether P becomes infinite or not in this particular case depends on whether 
the unstable steady branch doubles back or retains a positive slope for all R > R(e), and 
this cannot he determined from figure 3 (a) .  

When 5 = 0.05 the steady branch has to double back and R,i, < R(e). Yet figure 10 
suggests that the period remains finite as R approaches R,,,. Close inspection shows 
that the oscillations have changed. The original equations have no preference for 
clockwise or anticlockwise motion and this symmetry is preserved when oscillations 
first appear. For the solutions shown in figures 6, 7 and 8 each half-cycle is the mirror 
image of its predecessor. Just before R,,,, however, there is a bifurcation a t  which 
these symmetrical oscillatJions lose stability to asymmetrical oscillations, with a slight 
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preference for one or the other sense of motion. The period P does not change at this 
bifurcation but the loss of symmetry means that successive peaks in N ,  (uz) or (ABz) 
are no longeridentical and the period of these quadratic quantities jumps from +P to P. 
The differences are small but they can be clearly seen in figures 11 (a) and ( b ) ,  where N 
and (uz) are plotted for a full cycle for the last oscillatory solutions with 5 = 0.2 and 
6 = 0-05 respectively. I n  figure 11 ( b )  the maxima of N are 1.98 and 1.93, and the 
maxima of (u2) are 114 and 106; the corresponding variation in (AB2) is less than 1 yo. 
This pattern of asymmetric oscillations was maintained for five full cycles. 

These results imply that for CQ = 100, t: < 0.2 the transition from periodic to steady 
solutions at R = R,,, is preceded by a bifurcation from symmetrical to asymmetrical 
oscillations. An analogous bifurcation appears in the truncated system investigated 
by Knobloch et al. (1981) and similar bifurcations occur in other nonlinear systems. I n  
some cases, including the model studied by Da Costa et al. (1981), this bifurcation to 
a,symmetry may be followed by a sequence of bifurcations, at each of which the period 
doubles, until the solution becomes aperiodic after the accumulation point. The 
numerical experiments described here showed no signs of period doubling. I n  one case 
(Q = 100, C = 0.1, R = 1750) the oscillations had not settled down to being periodic 
when the run was terminated; in all other cases periodic solutions were eventually 
obtained. Irregular time-dependent behaviour is, however, more common at higher 
values of R and Q, as shown by the runs described in part 2. 

7. Subcritical steady convection 
For astrophysical applications it is important to  establish the lowest value of the 

Rayleigh number for which steady convection is allowed. As can be seen from figure 
4(b), the form of the nonlinear solutions depends on the competition between the 
thermally driven circulation and the counterflow driven by magnetic fields in the flux 
sheets. The vorticity contours show a central zone with negative vorticity flanked by 
two regions with (positive) countervorticity, centred on the current sheets where the 
field strength increases. I n  this case the flow is excluded from the flux sheets. On the 
other hand, if Q is sufficiently small the field has a Gaussian profile and its peak value 
B* is limited by diffusion. The extent of this kinematic regime can be estimated by the 
following simple argument (Galloway et al. 1978). We suppose that the Reynolds 
number V / r  is small; although this is not consistent with setting cr = 1 other two- 
dimensional calculations (Peckover & Weiss 1978) have shown that advection of 
vorticity has little qualitative effect on the solutions. For steady motion the velocity 
can then be separated into a part u, (with vorticity w,) that  is generated by the 
buoyancy force and a part u, (with vorticity w, )  that  is generated by the Lorentz 
force. From (2.14), 

V2w0 = RaT/ax, V2w1 = -CQB.Vj.  

Let V,, U, be the maximum numerical values of the vertical components of u,, u1 and 
let e be the half-width of the flux sheet. Then an order-of-magnitude calculation shows 
that 

The eddy is excluded from the flux rope when U, is comparable with U,. I n  the fully 
dynamical regime, therefore, 

(7.3) 
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which is independent of 7. Now E N ( U / c ) - l  in the kinematic regime, from (3 .14) ,  and 
so the transition from the kinematic to the dynamic regime occurs when 

u N (CSQ)'. (7 .4)  

Between the kinematic regime, where the Lorentz force is negligible, and the fully 
dynamic regime, where motion is excluded from the flux ropes, there is a transitional, 
weakly dynamic regime in which the concentrated field retains an approximately 
Gaussian profile in the flux ropes. From (7.4), the fully dynamic regime, with stagnant 
flux sheets in which the field has a top-hat profile, occurs only if Q 9 R!& 9 1. For 
square cells, when Q 9 1 and C < 1, steady convection first appears a t  R = R m i n  c R(e) 
with the field already concentrated into isolated sheets and with a finite velocity Umin 

(as in the cases described in 5 4 and § 5 above). Then the field has an approximately 
Gaussian profile for R > R m i n  provided that Umin 2 CQ2. In  the numerical experiments 
steady convection appeared with 1 c N 5 3 and U m i n  - 10. Hence the field retains a 
Gaussian profile if Q 5 C-4. I n  particular, for the weakly dynamic regime discussed by 
Busse (1975) the velocity Umin - (CtQ)g, from (3 .17) ,  and so the treatment holds only 
if @Q is sufficiently small. The results in table 1 indicate that the transition from a 
weakly dynamic to a fully dynamic regime a t  R = Rmin ,  which corresponds to  a 
transition from Gaussian to  top-hat profiles in the flux ropes, occurs when @Q NN 50. 

For 5 < 1 and c*Q 2 100 steady convection sets in with the field confined to  
stagnant flux sheets, which occupy about a quarter of the cell. A comparison of 
figures 4 ( b )  and ( c )  show that these sheets become more slender as the Rayleigh 
number is increased. I n  this fully dynamical regime the convecting region is separated 
from regions with strong fields by narrow current sheets across which the velocity 
drops to zero. I n  effect, the magnetic field changes the lateral boundary conditions for 
the convecting region. The current sheets exert a net tangential stress such that both 
components of u vanish a t  the sides of the eddy, and motion in the field-free region 
could be modelled by adopting fixed lateral boundaries while the horizontal boundaries 
remain free. For a given value of E the velocity and hence the temperature distribution 
depend only on R. Since u, is determined by the temperature, it follows from (7 .3)  that 
CQ is constant. Conversely, if R is given and 5Q held constant then e and B* are 
independent of C. (In dimensional terms, e depends on B, but not on 7. )  The thickness 
of the current sheet does depend on C and adjusts itself until ohmic losses are equal to  
the difference between the rate of working of the buoyancy force and the rate of viscous 
dissipation: thus this thickness is proportional to 5. 

It is difficult to  provide even a crude model of the dynamic regime, for the flux 
sheets need not be narrow compared with thermal plumes even if 5 < 1. It is, however, 
possible to  estimate R m i n .  Expulsion of magnetic flux allows convection a t  the centre 
of the cell but the flux ropes become dynamically more active as they are compressed. 
Suppose that the thermal plumes have half-widths 6, where e < S < 1. Then, from (7. l ) ,  

U, N 6R 
and, from (7 .2) ,  U, - U, when 

R = CQ/(66) > CQ. 

Hence steady convection should appear with moderately wide flux ropes so that 

R m i n  N CQ. (7.7) 
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As [Q increases Rmin also rises and the thermal plumes grow narrower, so that S-+ E .  

The numerical results in this paper and in Part 2 provide some support for (7.7)) 
though they are not yet in the asymptotic regime. At R = Rain, E - but thermal 
plumes are not yet fully formed even when Rmin = lo5, although the value of N does 
rise slowly as [Q is increased. 

Previous attempts to estimate the effective Rayleigh number for the onset of 
vigorous convection have also yielded criteria similar to (7 .7) .  For a perfect fluid there 
is the stability criterion of (3.2), which can be derived by balancing the buoyancy 
torque against the couple exerted by the field (Cowling 1953, 1957). Danielson (1961) 
supposed that vigorous steady convection appeared when R = R(S, at the transition 
from oscillatory to direct modes; from (3.10)) this yields the same result when [Q B 1.  
Criteria derived from linear theory may be misleading. Nonlinear results are harder to 
establish: Biermann (1941) suggested that the magnetic field in a sunspot is able to 
suppress convection because the magnetic energy density exceeds the kinetic energy 
density of ambient convection (an idea which he ascribed to Cowling). More precisely, 
the field becomes dynamically important when the Maxwell stresses are comparable 
with the Reynolds stresses (Cowling 1953). Balancing the kinetic energy, estimated 
from the reduced free-fall speed, against the energy in the magnetic field gives equation 
(7.7) again (Weiss 1964). None of these arguments allows for the formation of isolated 
flux tubes, which are the most obvious feature of actual nonlinear solutions. Still, it is 
obvious on dimensional grounds that any simple argument must end up with the same 
result. In  fact, Rmin is close to RCi), at least for [Q 5 500. 

The behaviour described above is 'subcritical ', in the sense that steady convection 
occurs for R < R(", but Rmin > R(O) in all the numerical results. It is of interest to 
discover whether nonlinear steady convection can occur at  Rayleigh numbers less than 
that for the onset of overstability when [ < 1. If so, linear theory may be totally 
misleading. Busse (1975) conjectured that Rmin might be less than R(O) for large Q and 
analogous behaviour has been demonstrated for double-diffusive convection (Huppert 
& Moore 1976). It seems unlikely that this can happen when h = Q = 1, for Rc0) -+ $R@ 
as [Q -+ co, from (3.7) and (3.10). Indeed, Rmin is never significantly less than Rci)in the 
regimes investigated here. On the other hand, the effect of increasing Q is to raise R@ 
and, in the limit when cr 9 1, R(O)-+ R(S. In  that case, there may be a range of Q for 
which Rmin is somewhat less than Rco); if so, the difference will still be fairly 
small. 

8. Conclusion 
The numerical experiments described in this paper provide an answer to the 

question: what field strength is needed to inhibit heat transport by convection Z In a 
fluid with K 9 7 magnetic flux is concentrated into isolated sheets or tubes which are 
embedded in the thermal plumes, and the dynamical effect of the field depends on the 
magnitude of Q. Provided that [*Q 5 1, steady convection occurs with R not much 
greater than R,, the critical Rayleigh number in the absence of a magnetic field. For 
1 5 [*Q 5 50, steady convection is possible if R exceeds the critical value Rmi, in 
(3.181, given by Busse (1975), and the field profile is approximately Gaussian. Once 
C*Q 2 100 the flux tubes become dynamically active. For Q > Q,, convection first 
appears as periodic oscillations but the Nusselt number remains low until steady con- 
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vection takes over at R = Rmin N CQ. I n  dimensional terms, steady convection is 

i.e. if the Alfvbn speed is significantly greater than the reduced free-fall speed. 
I n  this dynamical regime, magnetic flux is expelled from the convective eddies and 

concentrated into isolated sheets, from which the motion is excluded. The full extent 
of this regime, including the transition to a kinematic regime for large R, will be 
explored in Part 2. That paper also describes the effect of varying the cell width hand 
the development of solutions that are spatially asymmetric. Many features of these 
two-dimensional results occur also in a cylindrical configuration (Galloway 1977, 1978; 
Galloway & Moore 1979). Proctor & Galloway (1978) have also explored the curious 
behaviour of Rmin when Q is relatively small. The principal difference between the 
two-dimensional and axisymmetric configurations is that in the latter motion can be 
excluded from a central flux tube without appreciably reducing the external flow. In  
three dimensions, therefore, heat transport may scarcely be affected by the formation 
of flux ropes a t  the centres and corners of convection cells. 

The oscillatory solutions display a rich variety of behaviour, some of which is 
reproduced in the model calculations of Knobloch et al. (1981) and Knobloch &Proctor 
(1981). I n  magnetoconvection buoyancy competes with the stabilizing effect of a 
magnetic field, which is relatively weaker when the field is confined to isolated tubes. 
Similarly, the stabilizing effect of rotation is reduced by concentrating gradients of 
angular momentum and that of a solute is diminished by restricting gradients in 
concentration to  horizontal boundary layers. Of the various double-diffusive con- 
figurations that have been studied (Spiegel 1972), thermosolutal convection has 
attracted most attention. Huppert & Moore (1976) found many features of the problem 
discussed here, including a similar ' subcritical ' transition from oscillatory to steady 
motion, accompanied by a more dramatic jump in heat transport; they also observed 
a bifurcation from symmetrical to asymmetrical oscillations, which was followed by a 
transition to aperiodic oscillations. There are important differences too : the solutal 
concentration is a scalar and makes a linear contribution to the equations of motion, 
whereas the Lorentz force is quadratic in B, which is itself a solenoidal vector field. 
Solute plumes, unlike magnetic flux tubes, grow less dynamically active as they are 
compressed. The Lorentz force makes magnetoconvection a fascinating paradigm for 
the study of double-diffusive systems. This paper shows that, with the aid of numerical 
experiments, its rich nonlinear behaviour can be analysed and understood. 
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Appendix 
The list below specifies the values of R, Q and 5 for nearly all of the numerical 

experiments. In each case h = 1, cr = 1;  N, = 24 unless stated otherwise. Values of R 
are followed by corresponding values of the Nusselt number in brackets; light-face 
figures indicate the maximum and, where appropriate, the average values of N for 
oscillatory convection, bold-face values are for steady convection. The symbol a 
denotes asymmetric oscillations, while s indicates that a run, started either from a 
small perturbation or from the last oscillatory solution, settled down to steady con- 
vection, and o indicates that a run started from the first steady solution developed into 
oscillations. 

Q = 0: 1000 (1.46), 1250 (1*83), 1500 (2*11), 1750 (2*33), 

2000 (2*52), 2250 (2*68), 2500 (2*82), 2750 (2.94), 

3000 (3*06), 3500 (3.27). 

Q = 100, 5 = 0.1: 1200 (1-11), 1400 (1*27), 1600 (1.33), 1750 (a  1*30/1*37; 0), 

1800 (s; 1-25), 2000 (1*70), 2200 (1.90), 2600 (2.20), 

2800 (2.32), 3200 (2.54). 

1450 (1.3; 0), 1500 (1.30), 1600 (1*53), 1800 (1*80), 
2000 (2.00), 2200 (2*17), 2400 (2.32). 

Q = 100, 6 = 0.05: 

Q = 200, 6 = 0.05: 1900 (1.52; 0), 2000 (1*37), 2100 (1.55), 2200 (1*68), 
2400 (1*87), 2800 (2.16). 

4000 (1-77), 5000 (2-21), 6000 (2*54), 8000 (3*01), 

10000 (3*37), 12500 (3*76), 15000 (4.11). 

Q = 100, 5 = 1: 

Q = 200, 5 = 0.5: 3600 (1.16, 1-08), 3800 (1.24, l*ll), 4000 (1.31, 1-13), 

4200 (1.37, 1-16), 4100 (1-42, 1-17), 4600 (1.46, 1*17), 

4800 (1.49, 1.14; 0), 5000 (8; 1-21), 6000 (209), 8000 (2.59), 

10000 (2*93), 12500 (3*29), 15000 (3.62). 

2500 (1.16, 1*08), 3250 (1.67, 1-32), 4000 (2.04, 1*49), 

5000 (2.26, 1*55), 5500 (2-24, 1-49), 5900 (0), 6000 

(a  2*14/2*19,1.40; 1-45), 6100 (s ;  1*58), 6250 (1*66), 6500 (1*76), 

7000 (1*90), 7500 (2*02), 10000 (2*42), 12500 (2*72), 

15000 (2.99). 

Q = 500, 5 = 0-2: 

Q = 1000, 5 = 0.1: 3000 (1.86, 1*42), 4000 (2.33, 1-65), 5000 (2.45, 1*68), 

6000 (2.21, 1-48), 6250 (2.13, 1.41; 0), 6350 (1*44), 
6500 (2.08, 1.38; 1*54), 6600 (s), 7000 (1.70), 7500 (1*83), 

8000 (1.91), 9000 (2*07), 10000 (2.20); A?, = 48: 

12 500 (2-45), 15 000 (2.64). 
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Q = 2000, < = 0.05: 3000 (2.07, 1-52), 4000 (2.66, 1*83), 5000 (2.70, 1-81), 

6000 (2.16, 1-50), 6300 (0), 6400 (1.43), 6500 (1.97, 1-34; 

1-49), 6600 (1.97, 1-33), 6700 (1.97, 1*31), 6800 (a 1-93/1*98, 

1*29), 6900 (s; 1*62), 7000 (1-64), 7500 (1*75), 8000 (1.84); 

N, = 48: 6400 (1.40), 6500 (1.47). 

Q = 4000, = 0.025: N, = 48: 6500 (1.47). 
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